Essentials of Calculus
 Homework 5.1
 Velocity and distance

1. In t minutes, a snail's velocity will be $f(t)=3+2 t^{2}$ inches $/ \mathrm{min}$. Use a Riemann sum with $n=4$ and left endpoints to approximate how far the snail travels in the next 2 minutes. (Note that $\Delta t=1 / 2$.)

Numeric answer: The snail travels about 9.5 feet.
2. In t hours, water is poured into a pool at a rate of $f(t)=30+10 t^{2}$ gallons/hour. Use a Riemann sum with $n=4$ and right endpoints to approximate how much water is poured into the tank in the next 1 hour.

Numeric answer: About 38.75 gallons of water is poured into the tank.
3. The velocity of a car in t hours is given by the following table.

t (hours)	0	2	4	6	8
$f(t)$ (mile/hour)	50	70	100	120	140

a) Use left endpoints to approximate the distance traveled over the next 8 hours.

Numeric answer: The care travels about 680 miles.
b) Use right endpoints to approximate the distance traveled over the next 8 hours.

Numeric answer: The care travels about 860 miles.
4. The rate at which a mutant spider gains weight is given by the following table.

t (minutes)	0	15	30	45	60
$f(t)(\mathrm{kg} /$ minute $)$	1	2	5	10	14

a) Use left endpoints to approximate the weight gained over the next 60 minutes.

Numeric answer: The spider gains about 270 pounds.
b) Use right endpoints to approximate the weight gained over the next 60 minutes.

Numeric answer: The spider gains about 465 pounds.
5. Let f be the function with the following graph:

Use a Riemann sum with $\Delta x=1$ to approximate the area under the graph. (Use either left or right endpoints.)

Numeric answer: With left endpoints, the approximation is about 19.3 square units. With right endpoints, the approximation is about 24.3 square units.
6. Let f be the function with the following graph:

Use a Riemann sum with $\Delta x=1$ to approximate the area under the graph. (Use either left or right endpoints.)

Numeric answer: With left endpoints, the approximation is about 10.5 square units.
With right endpoints, the approximation is about 8.5 square units.

