Essentials of Calculus

Homework 5.1 Velocity and distance

1. In t minutes, a snail's velocity will be $f(t) = 3 + 2t^2$ inches/min. Use a Riemann sum with n = 4 and left endpoints to approximate how far the snail travels in the next 2 minutes. (Note that $\Delta t = 1/2$.)

Numeric answer: The snail travels about 9.5 feet.

2. In t hours, water is poured into a pool at a rate of $f(t) = 30 + 10t^2$ gallons/hour. Use a Riemann sum with n = 4 and right endpoints to approximate how much water is poured into the tank in the next 1 hour.

Numeric answer: About 38.75 gallons of water is poured into the tank.

3. The velocity of a car in *t* hours is given by the following table.

t (hours)	0	2	4	6	8
f(t) (mile/hour)	50	70	100	120	140

a) Use left endpoints to approximate the distance traveled over the next 8 hours.

Numeric answer: The care travels about 680 miles.

b) Use right endpoints to approximate the distance traveled over the next 8 hours.

Numeric answer: The care travels about 860 miles.

4. The rate at which a mutant spider gains weight is given by the following table.

t (minutes)	0	15	30	45	60
f(t) (kg/minute)	1	2	5	10	14

a) Use left endpoints to approximate the weight gained over the next 60 minutes.

Numeric answer: The spider gains about 270 pounds.

b) Use right endpoints to approximate the weight gained over the next 60 minutes.

Numeric answer: The spider gains about 465 pounds.

5. Let f be the function with the following graph:

Use a Riemann sum with $\Delta x = 1$ to approximate the area under the graph. (Use either left or right endpoints.)

Numeric answer: With left endpoints, the approximation is about 19.3 square units.

With right endpoints, the approximation is about 24.3 square units.

6. Let f be the function with the following graph:

Use a Riemann sum with $\Delta x = 1$ to approximate the area under the graph. (Use either left or right endpoints.)

Numeric answer: With left endpoints, the approximation is about 10.5 square units.

With right endpoints, the approximation is about 8.5 square units.