Essentials of Calculus

Homework 4.7

Logistic growth

1. The number of fish in a pond in t years is given by

$$
y=\frac{1000}{1+9 e^{-0.5 t}}
$$

fish.

- Sketch a graph of the fish population as a function of years.
- What is the carrying capacity of the pond?
- What is the current fish population of the pond?
- How many fish will be in the pond in 5 years?

2. The number of bacteria in a dish in t days is given by

$$
y=\frac{100000}{1+99 e^{-2 t}}
$$

fish.

- Sketch a graph of the bacteria population as a function of days.
- What is the carrying capacity of the dish?
- What is the current bacteria population of the dish?
- How many bacteria will be in the dish in one day?

3. An island contains 100 rodents, which have a growth rate of 0.2 /year. The island has a carrying capacity of $M=10000$ rodents.

- Find a formula $P(t)$ for the rodent population in t years.
- How many rodents will be on the island in 3 years?

4. A lake contains 200 frogs, which have a growth rate of 0.1 /year.

- Assuming exponential growth, how many frogs will there be in 10 years?
- Assume that the lake has a carrying capacity of 5000 frogs. write down a formula for the population $P(t)$ of frogs in t years.
- Assuming logistic growth, how many frogs will there be in 10 years?

5. A jar contains 500 bacteria, which have a growth rate of $2 /$ month.

- Assuming exponential growth, find a formula $P(t)$ for the number of bacteria in t months.
- Assuming exponential growth, how many bacteria will be in the jar in 12 months?
- Assume that the jar has a carrying capacity of 10000 bacteria. write down a formula for the population $P(t)$ of bacteria in t months.
- Assuming logistic growth, how many bacteria will be in the jar in 12 months?

6. A mountain range contains 50 yeti, which have a growth rate of 0.05/year.

- Assuming exponential growth, write down a formula $P(t)$ for the yeti population in t years.
- Assuming exponential growth, how many yeti will be in the range in 50 years?
- Assume that the mountain range has a carrying capacity of 1000 yeti. write down a formula for the population $P(t)$ of yeti in t years.
- Assuming logistic growth, how many yeti will there be in 50 years?

7. Assume that the human population is 7 billion and that we have a growth rate of 0.01 /year.

- Assuming exponential growth, write down a formula $P(t)$ for the human population in t years.
- Assuming exponential growth, how many people there be in 2025?
- Assume that the world has a carrying capacity of 100 billion people, write down a formula for the population $P(t)$ in t years.
- Assuming logistic growth, how many people will there be in 2025?

