Essentials of Calculus

Homework 4.7

Logistic growth

1. The number of fish in a pond in t years is given by

$$
y=\frac{1000}{1+9 e^{-0.5 t}}
$$

fish.

- Sketch a graph of the fish population as a function of years.
- What is the carrying capacity of the pond?

Numeric answer: The carrying capacity is 1000 fish.

- What is the current fish population of the pond?

Numeric answer: There are currently 100 fish in the pond.

- How many fish will be in the pond in 5 years?

Numeric answer: There will be 575 fish.
2. The number of bacteria in a dish in t days is given by

$$
y=\frac{100000}{1+99 e^{-2 t}}
$$

fish.

- Sketch a graph of the bacteria population as a function of days.
- What is the carrying capacity of the dish?

Numeric answer: The carrying capacity is 100000 bacteria.

- What is the current bacteria population of the dish?

Numeric answer: There are currently 1000 bacteria in the dish.

- How many bacteria will be in the dish in one day?

Numeric answer: There will be 6945 bacteria.
3. An island contains 100 rodents, which have a growth rate of 0.2 /year. The island has a carrying capacity of $M=10000$ rodents.

- Find a formula $P(t)$ for the rodent population in t years.

Numeric answer: $P(t)=\frac{1000000}{100+9900 e^{-0.2 t}}$

- How many rodents will be on the island in 3 years?

Numeric answer: There will be 181 rodents.
4. A lake contains 200 frogs, which have a growth rate of 0.1 / year.

- Assuming exponential growth, how many frogs will there be in 10 years?

Numeric answer: There will be 544 frogs.

- Assume that the lake has a carrying capacity of 5000 frogs. write down a formula for the population $P(t)$ of frogs in t years.

Numeric answer: $P(t)=\frac{5000}{1+24 e^{-0.1 t}}$

- Assuming logistic growth, how many frogs will there be in 10 years?

Numeric answer: There will be 509 frogs.
5. A jar contains 500 bacteria, which have a growth rate of $2 /$ month.

- Assuming exponential growth, find a formula $P(t)$ for the number of bacteria in t months.

Numeric answer: $P(t)=500 e^{2 t}$

- Assuming exponential growth, how many bacteria will be in the jar in 12 months?

Numeric answer: There will be $1.32 \cdot 10^{13}$ bacteria.

- Assume that the jar has a carrying capacity of 10000 bacteria. write down a formula for the population $P(t)$ of bacteria in t months.

Numeric answer: $P(t)=\frac{10000}{1+19 e^{-2 t}}$

- Assuming logistic growth, how many bacteria will be in the jar in 12 months?

Numeric answer: There will be 10000 bacteria.
6. A mountain range contains 50 yeti, which have a growth rate of 0.05/year.

- Assuming exponential growth, write down a formula $P(t)$ for the yeti population in t years.

Numeric answer: $P(t)=50 e^{0.05 t}$

- Assuming exponential growth, how many yeti will be in the range in 50 years?

Numeric answer: There will be 609 yeti.

- Assume that the mountain range has a carrying capacity of 1000 yeti. write down a formula for the population $P(t)$ of yeti in t years.

Numeric answer: $P(t)=\frac{1000}{1+19 e^{-0.05 t}}$

- Assuming logistic growth, how many yeti will there be in 50 years?

Numeric answer: There will be 391 yeti.
7. Assume that the human population is 7 billion and that we have a growth rate of 0.01 / year.

- Assuming exponential growth, write down a formula $P(t)$ for the human population in t years.

Numeric answer: $P(t)=7 e^{0.01 t}$ billion.

- Assuming exponential growth, how many people there be in 2025?

Numeric answer: There will be 7.36 billion people.

- Assume that the world has a carrying capacity of 100 billion people, write down a formula for the population $P(t)$ in t years.

Numeric answer: $P(t)=\frac{100}{1+13.29 e^{-0.01 t}}$

- Assuming logistic growth, how many people will there be in 2025?

Numeric answer: There will be 7.33 billion people.

