Essentials of Calculus

Homework 3.3

The chain rule

1. Suppose f and g have values given by the following table

x	1	2	3	4	5
$f(x)$	5	3	4	9	1
$f^{\prime}(x)$	5	-2	3	2	9
$g(x)$	4	5	1	2	4
$g^{\prime}(x)$	-4	4	-2	3	2

a) $h^{\prime}(1)$
b) $h^{\prime}(2)$
c) $h^{\prime}(3)$
d) $k^{\prime}(1)$
e) $k^{\prime}(2)$
f) $k^{\prime}(3)$
2. Find $f^{\prime}(x)$ for the following $f(x)$:
a) $f(x)=\left(x^{2}+1\right)^{5}$
b) $f(x)=\sqrt{2 x+5}$
c) $f(x)=\frac{1}{\left(2 x^{2}-2\right)^{3}}$
d) $f(x)=e^{x^{2}}$
e) $f(x)=e^{2 x-4}$
f) $f(x)=e^{\sqrt{x}}$
g) $f(x)=\ln \left(x^{2}-x\right)$
h) $f(x)=\ln (2 x+5)$
i) $f(x)=\frac{3}{\sqrt{x+2}}-4 e^{x^{4}}$
j) $f(x)=3\left(x^{2}+3 x-5\right)^{3}+2 e^{x^{2}-4}-5 \ln \left(2 x^{3}+1\right)$
k) $f(x)=5 e^{2 x-1}-4 \ln \left(10 x^{3}\right)$
l) $f(x)=5 x^{3}+7-3 e^{x^{3}}$
m) $f(x)=\sqrt{x}+2 \sqrt{x^{2}+1}+3 \sqrt{e^{x}-1}$
3. Let $f(x)=x^{2}+2 x+3 e^{x-2}$. Find an equation for the tangent line to $y=f(x)$ at $x=2$.
4. Let $f(x)=\frac{2}{x^{2}+1}+2$. Find an equation for the tangent line to $y=f(x)$ at $x=1$.
5. In t seconds, an object will be $f(t)=5+2\left(t^{2}+t\right)^{4}$ feet away. How fast will it be going in $t=2$ seconds?
6. The cost function for a company making q boxes of crayons is $C(q)=0.01 q^{2}+20 \ln (2 q+1)$ dollars. What is the marginal cost at $q=10$ boxes?
7. The cost function for a company packaging q gallons of spring water is $C(q)=100+0.05 \sqrt{q^{4}+q}$ dollars. What is the marginal cost at $q=5$ gallons?

