Essentials of Calculus

Homework 3.1

Derivative formulas

1. Find the derivative and second derivative for the following functions.
a) $f(x)=x^{5}$
b) $f(x)=\frac{1}{x^{3}}$
c) $g(t)=2 t^{3}$
d) $h(x)=4 / x^{4}$
e) $f(x)=3 \sqrt{x}$
f) $h(t)=2 t^{3}-5 t+9$
g) $f(x)=3 / \sqrt{x}$
h) $g(x)=(2 t-1)\left(t^{2}+1\right)$
i) $f(x)=5 x^{3}-6 x^{2}+7 x-8$
j) $f(x)=\sqrt{x}-1 / \sqrt{x}$
k) $f(x)=(2 x-1)(3 x+5)$
2. For each of the following functions, find $f(1), f^{\prime}(1), f^{\prime \prime}(1), f(3)$, $f^{\prime}(3)$ and $f^{\prime \prime}(3)$.
a) $f(x)=5 x^{2}+8 x$
b) $f(x)=2 / x^{3}$
c) $f(x)=(x+1)(x-1)$
3. Let $f(x)=2 x^{2}+4+2 / x^{2}$. Find the rate of change of f at $x=2$.
4. Find the tangent lines to the following graphs.
a) $y=x^{2}+x$ at $x=2$.
b) $y=\sqrt{x}$ at $x=4$.
5. The number of fish in a pond in t years is $P(t)=100 t^{1 / 3}$ fish. Find the population and the rate of growth of the population in 8 years.
6. It costs a company $C(q)=0.1 q^{2}+75 q+50$ dollars to make q doodads. Find the cost and marginal cost at $q=20$ doodads.
7. A ball is thrown down from the top of a tall building. In t seconds, the ball's height will be $f(t)=200-10 t-16 t^{2}$ feet. What is the ball's height and velocity in $t=2$ seconds?
